
OPTIMIZING COMPLEX MACHINE INSTRUCTIONS WITH DYNAMIC TRELLIS
DIAGRAMS

Stefan Fröhlich and Bernhard Wess

Institut für Nachrichtentechnik und Hochfrequenztechnik
Vienna University of Technology

Gußhausstraße 25/389, A-1040 Vienna, AUSTRIA

Email: Stefan.Froehlich@nt.tuwien.ac.at

ABSTRACT

In this paper, we present the application of dynamic
trellis diagrams (DTDs) to automatic translation of da-
ta flow graphs (DFGs) into highly optimized programs
for digital signal processors (DSPs). The concept of
DTDs, which is superior to static trellis diagrams used
in previous algorithms, is extended to support complex
machine instructions such as the MAC operation.

In contrast to static trellis diagrams (STDs), which
may be precalculated, DTDs are built at run-time and
adapted exactly to the local requirements. This allows
to support arbitrary complex machine instructions con-
sisting of several atomic operations which is not pos-
sible with STDs. As a result, DTDs are more flexi-
ble. Additionally, they need less program memory than
STDs. Due to the significant reduction in memory si-
ze, the (unavoidable) increase of compilation time is
only moderate. At present, the concept of DTDs has
been successfully applied to DFG compiler implemen-
tations for a variety of general purpose DSP families,
including Motorola’s DSP56000 and Analog Devices’
ADSP2100.

1. INTRODUCTION

Programs for DSPs are frequently written in assembly
language, even though compilers for high level langua-
ges do exist. The reason is that most compilers are not
performing well with respect to code size (and there-
fore run-time). A typical handcoded program will run
at about a magnitude faster if coded by an experienced
assembly-level programmer. The reason for this beha-
viour is due to the special architecture of DSPs which
makes the implementation of compilers based on stan-
dard compiler techniques rather difficult. Additionally,
algorithms which run on DSPs are rather time critical,
so there is a need to exploit every single instruction
cycle which can be saved.

DFG
decomposition

using DTDs

Straight line code
generation

Compaction
and linkage

DFG

Target architecture
desctiption

TD

ASS

data flow graphs

optimized DSP assembly code

straight line code

expression trees

Figure 1: Basic blocks of the DFG compiler

Programming by hand delivers high quality results,
but it is time consuming and error prone, so new solu-
tions to achieve highly-optimized code are desirable.

To produce better results, a DFG compiler has been
developed which is able to produce optimum assembly
code for a single expression tree and highly-optimized
assembly code from a complete DFG specification. An
overview of the compiler is given in Figure 1. It con-
sists of a DFG decomposition unit which splits the
DFG into one or more expression trees (ETRs) [1, 2],
the straight-line code generation which includes the
dynamic trellis diagrams discussed in this paper and
a postprocessing step to perform code compaction and
the linkage of the code fragments for each expression
tree.

The tree decomposition has to be done because
the generation of optimal assembly code directly from
DFGs has shown to be NP-hard [3]. Figure 2 gives a



c1

+

x

*

c2 c3

T

T

+

*

T

c1

c2 c3

x

T T

T

Figure 2: Exptression tree and trellis tree for x = c1 +
c2 ∗ c3

very simple example for an expression tree and the cor-
responding trellis tree, consisting of an addition and a
multiplication, forming a typical MAC instruction.

After the tree decomposition is finished and all ex-
pression trees are identified, locally optimal code is ge-
nerated for each of the trees using the proposed algo-
rithm, which has an O(n) run-time behaviour [4, 5],
n denoting the number of nodes in the DFG. At the
beginning of this step, the trellis tree (which is shown
on the right side of Figure 2) is generated by conca-
tenating the appropriate trellis diagrams and inserting
transfer diagrams in between them. As the generated
code is optimal for each trellis tree, it is useful to se-
lect the trees as large as possible in order to achieve to
best global performance.

As a last step, the locally optimal code segments
are concatenated to match the original DFG. After-
wards a compaction algorithm combines two or mo-
re instructions into one large instruction word whe-
never possible, thus generating highly-optimized code
for the DFG.

The DFG compiler has been made machine inde-
pendent by using a behavioural target architecture de-
scription. This description is specified in a special lan-
guage (TDL, [6]), designed to fit the requirements of
the compiler. Retargeting can be performed by simp-
ly replacing the target description. At present, target
descriptions exist for a subset of the functionality of
Motorola’s DSP56000, Analog Devices’ ADSP2100,
Texas Instruments’ TMS320C5x and NEC’s 7701.

2. RELATED WORK AND BASIC OPERATION

The first DFG compilers based on the trellis algorithm
have been using static trellis diagrams. Trellis diagrams
are used as building blocks for the trellis trees which
are the basic data structure in the code generation pro-
cess, containing all the necessary information about
the target architecture. An example of a static trellis
diagram is shown in Figure 3, describing the add ope-

Mem
1A0B 1A1B

0A2B
1A2B

0B0A
1B0A

0B1A
1B1A

0B2A0A0B 0A1B
1B2A

Mem
1A0B 1A1B

0A2B
1A2B

0B0A
1B0A

0B1A
1B1A

0B2A0A0B 0A1B
1B2A

Mem
1A0B 1A1B

0A2B
1A2B

0B0A
1B0A

0B1A
1B1A

0B2A0A0B 0A1B
1B2A

Source 1 Source 2

Destination

Figure 3: STD of a simple add instruction

ration of a simple DSP architecture with four registers
A0, A1, B0 and B1, which are organized in two banks
A and B. The registers within a bank are symmetric,
which means that they are completely interchangable.
The trellis diagrams consist of nodes and edges. Each
node (which is also called state) corresponds to a cer-
tain configuration of allocated and available registers.
Additionally it defines the register used by the current
result. The edges of a trellis diagram correspond to an
instance of an arithmetic or logic operation, connec-
ting two or more processor states.

The operation shown in Figure 3 corresponds to
the assembly instruction A = A + B. At the top of
the figure the destination states can be found. Within
the scope of this example, only the bold lines leading
to destination state 0A0B are considerd, indicating that
none of the registers are locked and the result is stored
into register A. In the notation used here, the register
which is written first also contains the current operand.
As the registers A0 and A1 are symmetric there is no
need to decide which register to use at this point of
time, as long as we can guarantee that there is at least
one register of set A available. The numbers in the state
description indicate the number of registers not availa-
ble. So 0A means that no register of register bank A is
used yet, thus two registers are free to be used.

The two lines at the bottom of Figure 3 represent
that machine states for the source operands of the cur-
rent operation. The notation used is the same as for the
destination operand. It is essential that the connection
between source and target states reflect the correct pro-
cessor states. If as an example the left operand is eva-
luated first, all registers, which are available after the
operation has completed, are available while calcula-
ting this operand, too. For the evaluation of the right
operand, which is done afterwards, there is one less
register available because it has to keep the value for
the first operand. Figure 3 reflects this by using state
0A0B for the first source as well as for the destination



(indicating that the operand is stored in a register of
bank A) and by using state 0B1A for the second ope-
rand. The latter state indicates that one register of bank
A is locked as well as that the second operand is stored
in a register of bank B.

The pair of dashed lines shows another alterna-
tive to evaluate the given expression, calculating the
second operand first and the first operand afterwards,
using the appropriate states. Furthermore, one could
use two more combinations by rewriting the formula
as A = B + A, which actually swaps the operands.
These combinations are shown in dotted style.

If not all registers are available for the computati-
on of the destination, a different state must be used as
a starting point for the trellis algorithm. The procedure
shown above has to be repeated for all possible desti-
nation states to receive the complete trellis diagram as
shown in Figure 3.

The number of states within a trellis diagram large-
ly depends on the architecture of the target processor.
Homogeneous machines need significantly less states
than heterogeneous DSPs. Altogether a trellis diagram
has at most

NSmax
= 1 + NR2NR−1

different states [5]. In this equation, NR denotes the
number of data registers. Basically the number of states
increases exponentially with the number of registers.
However, it can be reduced if the effects of symme-
tric registers are exploited. As an expample, the trel-
lis diagrams for Motorola’s DSP56000 (representing a
rather homogeneous architecture) consist of 103 dif-
ferent states, however the trellis diagram for the AD-
SP2100 (which has more heterogeneous registers) con-
tains more than half a million states, making it practi-
cally impossible to build trellis diagrams for this target
architecture.

The trellis trees are built by replacing each node
of the expression tree with the appropriate trellis dia-
gram. By doing this the arithmetic operation represen-
ted by the expression tree is replaced with the corre-
sponding machine instruction. As it cannot always be
guaranteed that the destination register of one instruc-
tion is available as a source register for the following
one, move diagrams have to be inserted between each
two arithmetic instructions. These move diagrams al-
so contain nop instructions (if the same register can be
reused) and load/save instructions to be able to store
intermediate results in the DSP memory. An example
of an expression tree and the resulting trellis tree for
the expression x = c1 + c2 ∗ c3 is given in Figure 2.
Cost values are assigned to all edges in the trellis tree.
Usually the cost value is proportional to the execution
time of the instruction. As most DSPs execute one in-

0A0B 0B0A

0B1A0A0B 0A1B 0B0A

Mem Mem

Mem

0B0A 0B1A0A0B 0A1B

MOV A0,M MOV B0,M

A0 = A0 + B0

MOV M,A0

Figure 4: Dynamic trellis diagram

struction per clock cycle, all cost values are set to 1. In
one single bottom-up traversal the path with minimum
costs may be identified with the total cost value rela-
ted to the run time of the generated code. The resulting
sequence of instructions is the optimum straight-line
code for the expression tree.

3. DYNAMIC TRELLIS DIAGRAMS

If static trellis diagrams are used to apply the algorithm
described above, typically a large number of states re-
main unsued, especially for architectures with a hete-
rogeneous instruction set. Typically, arithmetic or lo-
gical instructions write back their result into one or
two specific registers (or registers of a specific register
bank). It is therefore not necessary to create and use
all possible states. The algorithm is restricted to states
which are allowed by the machine description for the
surrounding instructions. As most DSP architectures
support more different source registers than destina-
tion registers, most of the savings will be due to the
target register set of the instructions used.

The downside of this procedure is that no prebuilt
diagrams may be used any more as the actual decision
which and how many states have to be used depends
on the current context of the instruction, i.e. the source
registers of the next and the destination registers of the
previous instruction. So the trellis diagrams are built
dynamically whenever a node of the expression tree is
encountered.

As explained before, the dynamic creation saves a
large part of data memory within the compilation pro-
cess, as only a small fraction of the possible states is
used. Figure 4 shows an example for a trellis diagram
representing an add operation surrounded by three mo-
ve diagrams. By comparing this to Figure 3, the reduc-
tion of states is obvious, especially if considering that
Figure 4 contains three additional move instructions
which have been omitted in Figure 3.



The dynamic creation saves memory but more CPU
time is used as every diagram has to be built from
scratch. The consequence is a serious run-time over-
head when compared to the algorithm using STDs. To
reduce this overhead to a minimum, every state en-
countered is saved in an AVL tree. If the very same
state is used again (which is likely to happen as due to
the symmetric nature of most signal processing algo-
rithms similar combinations of arithmetic instructions
occur frequently), the old object will be copied instead
of building it once more. This compensates some of the
negative run-time aspects but not completely as the-
re still are many different variants of trellis diagrams
for each instruction. The principle of DTDs as well as
measurements about their performance have been pre-
sented in more detail in [7].

4. EXTENDING TO COMPLEX MACHINE
INSTRUCTIONS

Standard trellis diagrams do not support complex in-
structions as there is a one to one mapping between the
arithmetic operations used in the expression tree and
the diagrams used in the trellis tree. As each complex
machine instruction may as well be calculated by two
(or more) distinct basic machine instructions, complex
diagrams do not fit into this procedure.

Dynamic trellis diagrams are created just by the ti-
me they are needed and they contain only the states
which are admissible in the current context. Therefo-
re, a strictly organized tree structure is not needed for
DTDs, it is enough, if the expression tree is mapped
into a directed graph (i.e. there may not be any loops).

This modification makes it possible to generate trel-
lis diagrams not only for the atomic operations of the
destination platform but also for compound comman-
ds, like e.g. MAC operations. These diagrams which
may as well cover two or more levels of the expres-
sion tree. It is also possible that they have more than
two source operands and they may contain edges ori-
ginating from more than only one specific machine in-
struction. However, it is necessary that each operand
corresponds to one edge of the expression tree and that
each edge of the trellis diagram belongs to a certain
instruction of the target hardware.

Opposed to static diagrams, where only copies of a
template are placed into the new tree, with DTDs it is
not possible to use a simple top-down method to create
the trellis tree. However, it is necessary to keep track of
the operands whenever a diagram with a height of two
or more levels is processed as the same operands will
be used later on when the appropriate basic diagrams
are inserted. The best place to store such information
is the expression tree, as in its structure it corresponds

to the new trellis tree. So it is necessary to add new
attributes to the nodes of the expression tree pointing
to dangling operands of the trellis tree which is just
being built. It is important that all dangling operands
are resolved during the building process. If any end
remains unconnected, the resulting tree is not valid.

5. EXPERIMENTAL RESULTS

The part of an existing code generator containing the
DTD creation and manipulation has been extended to
support complex machine instructions. The trellis tree
has been modified to contain temporary information
during the time the trellis tree is built. The existing tar-
get description language has been extended to support
complex machine instructions by concatenating two or
more simple arithmetic operations to one command.
At present, descriptions for Motorolas DSP56000 and
Analog Devices ADSP21000 contain the description
of MAC instructions. An extension to support roun-
ding and saturation operations is not complicate and
planned for the future. The program has been tested
with several different examples and the results have
been examined. It is not possible to give generic re-
sults, as the savings and the quality of the resulting co-
de heavily depends on the actual graph. Applications
which offer more opportunities for the application of
complex machine instructions will benefit more than
small programs which don’t. Basically, every potential
MAC operation will be exploited. An example, where
the savings are big is a second order state space filter,
which needs 10 instruction cycles with MAC instruc-
tions, but 16 without.

As the same data structures are used and the time-
critical algorithms are not changed the extension pre-
sented in this paper does not change the memory or
CPU requirements of the algorithm. The only diffe-
rence is a broader selection of machine instructions
to choose from, but as there are only a few complex
instructions opposed to a variety of different add in-
structions (to support different target register set, me-
mory banks or addressing modes), the impact on the
run-time behaviour is not noticeable.

Opposed to STDs, a moderate run-time increase
can been observed, resulting from the creation of every
single trellis diagram opposed to the usage of precal-
culated diagrams for the STD algorithm. This increase
is partly but not completely compensated by a speed
gain during the evaluation of the trellis tree, resulting
from the use of a much smaller number of nodes and
links. The total run-time strongly depends on the de-
gree of orthogonality of the architecture, ranging from
a few seconds for Motorola’s DSP65000 series to se-
veral minutes for Analog Devices ADSP2100. At this



point it has to be noted, that due to the huge number
of states for the ADSP processors, it was not possi-
ble at all to compile code for these architectures using
STDs as well as to use arbitrary complex machine in-
structions for any architecture. Therefore the increased
run-time is not avoidable if code for heterogeneouse
architectures has to be generated.

6. CONCLUSIONS

The proposed method of using DTDs to generate high-
ly optimized DSP code makes DFG based code ge-
neration applicable to most available general purpose
DSP architectures. By omitting unnecessary nodes and
edges in the trellis tree, the amount of memory nee-
ded can be significantly reduced. This can be done by
creating new trellis diagrams for each and every node
in the tree instead of using precalculated information.
When creating the diagrams, only nodes which are ac-
tually being used are added to the trellis diagram. The
savings are especially high for non-orthogonal DSP ar-
chitectures.

Further savings can be achieved by supporting the
usage of complex machine instructions. These instruc-
tions are difficult and awkward to support with static
trellis diagrams. Programs which contain multiplica-
tions followed by additions would require two diffe-
rent trellis diagrams, one containing the individual ato-
mic operations and another one for the complex MAC
instruction. This is not possible within the scope of
STDs, so workarounds have to be used which cannot
be generalized. The proposed algorithm allows to ex-
ploit MAC- and rounding operations as well as other,
machine specific complex arithmetic operations in a
very general way. It is able to find the optimum solu-
tion for each graph which may be represented within
one expression tree. The complex machine instructi-
ons are defined in the target architecture description fi-
le and applied to the input DFG. Complex instructions
are used whenever they lead to shorter (and therefo-
re faster) machine code. It is also possible, although
not yet implemented, to map machine instructions of
a different arithmetic or logical type into a single trel-
lis diagram, whenever this is permitted. As an exam-
ple it may be shorter to perform a multiplication by 2
by using an add instruction and adding the operand to
itself. As a third possibility, a shift operation by one
bit is also possible. All these instructions can be com-
bined into one dynamic trellis diagram, the standard
algorithm will select the best alternative which is used
in the final assembly code.

The code generator is architecture independent, the
assembly language may be specified using a special
hardware description language. This specification is

used for the dynamic creation of the trellis diagrams.
Complex instructions have to be specified here to be
recognized while the trellis diagrams are generated.
The usage of instructions of a different arithmetic or
logical type requires no specification in the architec-
ture description but has to be integrated into the trellis
diagram generation process.

7. REFERENCES

[1] M. Gotschlich and B. Wess, “Automatic gene-
ration of constrained expression trees for global
optimized DSP assembly code”, in Proc. 7th
Int. Conf. on Signal Processing Applications &
Technology, vol. 1, pp. 732–736, Boston, October
1996.

[2] B. Wess and W. Kreuzer, “Optimized DSP assem-
bly code generation starting from homogeneous
atomic data flow graphs”, in Proc. 38th Midwest
Symp. on Circuits and Systems, vol. 2, pp. 1268–
1271, Rio de Janeiro, August 1995.

[3] M. R. Garey and D. S. Johnson, Computers
and Intractability, W. H. Freeman and Company,
1979.

[4] B. Wess, “Automatic instruction code genera-
tion based on trellis diagrams”, in Proc. IEEE
Int. Symp. on Circuits and Systems, vol. 2, pp.
645–648, San Diego, May 1992.

[5] B. Wess, “Code generation based on trellis dia-
grams”, in P. Marwedel and G. Goossens, editors,
Code Generation for Embedded Processors, chap-
ter 11, pp. 188–202. Kluwer Academic Publishers,
1995.

[6] U. Krebelder, C. Brem, S. Fröhlich, and M. Got-
schlich, “Target description language TDL - Ein
Dateiformat zur Beschreibung von Signalprozes-
soren”, Technical Report VCGRG-97-1, Institut
für Nachrichtentechnik und Hochfrequenztechnik,
University of Technology, Vienna, 1997.

[7] S. Fröhlich, M. Gotschlich, U. Krebelder, and
B. Wess, “Dynamic trellis diagrams for opti-
mized DSP code generation”, in Proc. IEEE
Int. Symp. on Circuits and Systems, Orlando, Ju-
ne 1999.


