
DYNAMIC TRELLIS DIAGRAMS FOR
OPTIMIZED DSP CODE GENERATION

Stefan Fröhlich, Martin Gotschlich, Udo Krebelder and Bernhard Wess

Institut für Nachrichtentechnik und Hochfrequenztechnik
Vienna University of Technology

Gußhausstraße 25/389, A-1040 Vienna, AUSTRIA

EMail: Stefan.Froehlich@nt.tuwien.ac.at

ABSTRACT

In this paper, we present the application of dynamic trellis
diagrams (DTDs) to automatic translation of data flow gra-
phs (DFGs) into highly optimized programs for digital si-
gnal processors (DSPs). In contrast to static trellis diagrams
(STDs), which may be precalculated, DTDs are built at run-
time and adapted exactly to the local requirements. There-
fore, DTDs are more flexible and need less program me-
mory. Due to the significant reduction in memory size, the
increase of compilation time is only moderate. At present,
the concept of DTDs has been successfully applied to DFG
compiler implementations for a variety of general purpose
DSP families, including Motorola’s DSP56000 and Analog
Devices’ ADSP2100.

1. INTRODUCTION

The programming of general purpose DSPs is either very
inefficient or very time-consuming. The reason for this be-
haviour is the lack of well performing compilers in an envi-
ronment where real-time algorithms have to be implemen-
ted. Typically, hand-coded DSP programs are about a ma-
gnitude faster than code which is generated from a standard
DSP C-Compiler.

To produce better results, a DFG compiler has been de-
veloped which is able to produce highly optimized assembly
code from a DFG specification. An overview of the compi-
ler is given in Figure 1. It consists of a DFG decomposition
unit which cuts the DFG into one or more expression trees
(ETRs) [1, 2].

This step is necessary because the generation of opti-
mal code directly from DFGs is known to be NP-hard [3].
An example for a simple expression tree and a trellis tree is
given in Figure 2. The next step is to generate locally op-
timal code for each of these trees using the proposed algo-

This work was supported by the Fonds zur Förderung der wissen-
schaftlichen Forschung (FWF) under research grant P10701-ÖTE

DFG
decomposition

using DTDs

Straight line code
generation

Compaction
and linkage

DFG

Target architecture
desctiption

TD

ASS

data flow graphs

optimized DSP assembly code

straight line code

expression trees

Figure 1: Basic blocks of the DFG compiler

c1

+

x

*

c2 c3

T

T

+

*

T

c1

c2 c3

x

T T

T

Figure 2: Exptression tree and trellis tree for ���������	��
�����

rithm, which has an ������� run-time behaviour [4, 5]. During
this step, a trellis tree is generated by concatenating the ap-
propriate trellis diagrams and inserting transfer diagrams in
between. As the generated code is optimal within each ex-
pression tree, the trees should have the maximum size pos-
sible. Afterwards, the code segments are concatenated and
compacted by combining two or more instructions into one
whenever this is possible, yielding highly optimized code
for the given DFG.

The DFG compiler has been made machine independent
by using a behavioural target architecture description. This
description is specified in a special language (TDL, [6]), de-
signed to fit the requirements of the compiler. Retargeting
can be performed by simply replacing the target description.
At present, target descriptions exist for a subset of the func-
tionality of Motorola’s DSP56000, Analog Devices’ AD-
SP2100, Texas Instruments’ TMS320C5x and NEC’s 7701.

2. RELATED WORK AND BASIC OPERATION

Previous versions of the DFG compiler have been using sta-
tic trellis diagrams. Trellis diagrams are the building blocks
for trellis trees which serve as an underlying data structure
in the code generation process. As shown in Figure 3, they
consist of nodes and edges. The nodes, which are also cal-
led states, correspond to a particular storage resource type
which can either be a specific register or an arbitrary memo-
ry location. Each state specifies not only the operand loca-
tion ��� but also a set of data registers 	
� which is assumed
to be available for the execution of the instructions. Edges
correspond to instructions of a specified arithmetic or logic
operation.

The trellis diagram presented in Figure 3 shows the rele-
vant parts of the add instruction � � � �� of a hypotheti-
cal four-register machine with the registers ����������� � � and� � . At the top of the figure, the destination states are listed.
In this diagram we only consider state 0A0B which indicates
that none of the registers is locked and the result is stored in
register A. In our notation, writing a register first means that
it contains the current result. Registers ��� and ��� are sym-
metric, so the algorithm only has to decide in which bank
the result is stored. The exact register may be determined
later on. The two lines at the bottom represent the register
states for the operands. If the left operand is evaluated first,
again all registers may be used and the operand is stored
in register A. The right operand, which is evaluated after-
wards, may not modify the register with the intermediate
result evaluated before. Thus state 0B1A is used, indicating
that 1 register of set A is locked and the result is stored into
register B.

The dotted pair of lines is used if the right operand is
evaluated before the left one. Additionally, the statement
could be rewritten � ��� � � , thus swapping the two trees,

a=a+b

0A0B Mem1A2B

0A0B 0A1B Mem1A2B

0B0A 0B1A Mem

Destination

Source 1

Source 2

Figure 3: STD of a simple add instruction

which would lead to two more sets of states. However, the
principle remains the same, so these lines are skipped in the
diagram. If one or more registers are locked because of the
instructions above the current one, the appropriate state has
to be used for the destination register. The procedure to de-
rive the source states remains the same.

A trellis diagram has altogether at most

��������� � � � ���
 �"!$# �
different states [7]. In this equation,

���
denotes the num-

ber of data registers. Essentially the number of states incre-
ases exponentially with the number of registers. However,
it can be reduced if the effects of symmetric registers are
exploited. As an expample, the trellis diagrams for Moto-
rola’s DSP56000 (having more symmetric registers) consist
of 103 different states, however the trellis diagram for the
ADSP2100 (which has more heterogeneous registers) con-
tains more than half a million states, making it practically
impossible to build trellis diagrams for this target architec-
ture.

Trellis trees are built from exptression trees by replacing
each ETR node by a trellis diagram. The arithmetic or logic
operation of the ETR node corresponds to the instructions of
the trellis diagram. The trellis diagrams are augmented with
move diagrams which ensure that the instruction operands
of adjacent arithmetic or logic operations may be located in
different registers, or that intermediate results may be sto-
red in memory. An example of an expression tree and the
resulting trellis tree is given in Figure 2 for the expression
� � ��� � ��
 � ��� . Cost values are assigned to all edges in
the trellis tree. The cost of an edge is typically the num-
ber of processor cycles necessary to execute the instruction.
In one single bottom-up traversal, the path with minimum
costs may be identified with the total cost value related to
the run time of the generated code. The resulting sequence

0A0B 0B0A 0B1A 0A1B 0B1A 0A0B 0B0A0A1B

M M

M

0A0B

add $s[1]$,$s[2]$ add $s[1]$,$s[2]$

lod d,$s[1]$

lod d,$s[1]$

lod d,$s[1]$

lod d,$s[1]$

lod d,$s[1]$

lod d,$s[1]$

lod d,$s[1]$

lod d,$s[1]$

sto d,$s[1]$

Figure 4: Dynamic trellis diagram

of instructions is the optimum straight-line code for the ex-
pression tree.

3. DYNAMIC TRELLIS DIAGRAMS

When using the algorithm described above, it can be noti-
ced that often a large number of the states remain unused.
Typically, an arithmetic or logical instruction writes back
the result into a certain register or register bank. In these
cases it is unneccessary to create all possible states (which
are permutations of all registers currently available). We re-
strict the algorithm to states which are candidates for the
optimum path. The same is true for the source operands.
However, in typical DSP architectures, there are more diffe-
rent source registers available than destination registers, so
the savings will be smaller. To use these potential savings,
it is no longer possible to create prebuilt trellis diagrams,
as the actual number of states used depends on the current
context, i.e. the set of possible destination registers of the
instruction right before and the possible source registers of
the next instruction. Instead, the trellis diagrams are built
dynamically whenever a new node of the expression tree is
encountered.

The dynamic construction saves program memory, as
only a small fraction of all possible states will be used. For
example in Figure 3 all the nodes without an edge leading
to them would be skipped. An example for a DTD is gi-
ven in Figure 4, which shows the dynamic trellis diagram
for an addition augmented by move diagrams. On the other
hand, every trellis diagram has to be created from scratch,
resulting in a run-time overhead when compared to the pre-
built diagrams of the STD algorithm. To reduce this over-
head, every state encountered is saved into an AVL tree. If

States10050

Count
20

10 max. number of statesavg. number of states

Figure 5: Number of states used to generate DSP56k assem-
bly code

a specific state is used another time (which is likely to hap-
pen due to the symmetric nature of most signal processing
algorithms) the old state objects can be copied instead of
building them another time which compensates some of the
negativ run-time aspects.

4. EXPERIMENTAL RESULTS

DTDs have been integrated into a code generator transfor-
ming DFGs into generic DSP assembly code automatically.
The program has been tested with several different graphs
and the results have been examined. It is not possible to gi-
ve an exact calculation concerning the savings due to the
use of DTDs because the actual number of links used hea-
vily depends on the graph which is parsed. However, note
that the reduction of memory usage is significant as can be
seen in Figures 5 and 6 which have been generated from a
DFG describing a second order lattice filter. The DS56000
diagrams are significantly smaller due to the symmetric na-
ture of the processor. The savings compared to a STD are
about 75% (the average number of states is approximately
21 opposed to a maximum number of 103). The ADSP2100
diagrams are one magnitude larger, however they are more
than 99% smaller than the corresponding STDs. This is due
to the highly asymmetrical architecture of the ADSP2100
which makes the use of STDs practically impossible. The
average number of states with DTDs is 275.

A moderate run-time increase has been observed, resul-
ting from the creation of every single trellis diagram op-
posed to the usage of precalculated diagrams for the STD
algorithm. This increase is partly compensated by a speed
gain during the evaluation of the trellis tree, resulting from
the use of much lesser nodes and links. The total run-time
strongly depends on the orthogonality of the architecture,
ranging from a few seconds for Motorolas DSP65000 series
to several minutes for Analog Devices ADSP2100. It has to
be noted, that due to the huge number of states for the AD-
SP processors it was impossible to compile code for these

2

4

6

8

10

Count

States1000500

avg. number of states

Figure 6: Number of states used to generate ADSP2100 as-
sember code

architectures using STDs.

5. CONCLUSIONS

The proposed method of using dynamic trellis diagrams to
generate highly optimized DSP code makes DFG based co-
de generation applicable to most available general purpose
DSP architectures. By omitting unnecessary nodes and ed-
ges in the trellis tree, the amount of memory needed can
be significantly reduced. This can be done by creating new
trellis diagrams for each and every node in the tree instead
of using precalculated information. When creating the dia-
grams, only nodes which are actually being used are added
to the trellis diagram. The savings are especially high for
non orthogonal DSP architectures. The code generator is
architecture independent, the target language may be spe-
cified using a special hardware description language. This
information is used for the dynamic creation of the trellis
diagrams. Besides, the much more efficient memory usa-
ge, DTDs allow other improvements of the code generation
process, which have yet to be exploited.

For the scope of this paper, DTDs have been used to re-
duce storage when building and evaluating the trellis tree.
However, it seems to be possible to gain additional benefits.
With STDs, the implemenation of multiple instructions li-
ke the MAC command, which is typical on standard DSP
architecures, has shown to be problematic. As a program
may either contain a multiplictation command followed by
an addition, or on the other hand may use a single MAC in-
struction, one would need two different kinds of STDs to co-
ver the trellis tree. As this is not possible, workarounds like
virtual registers have been introduced. These workarounds
are awkward and cannot be generalized. With DTDs howe-
ver, there is the possibility to make a dynamic connection
directly from the leaves of the MAC instruction to the regi-
ster containing the result. This may be used in combination
with the standard connections of the separate multiplication
and addition. Effectively the two alternatives are both pre-

sent in the trellis tree (without the necessity of any virtual
registers), allowing the compiler to choose the more effi-
cient one. Another improvement is the possibility to map
different types of instructions to one single node of the trel-
lis diagram. For example, a multiplication by two may be
expressed as a multiplication (with a factor two), an addi-
tion (with equal operands), or as a shift command (by one
to the left). With STDs, these additional opportunities could
not be exploited as the trellis diagrams for the individual
commands have been prebuilt and could not be adapted to
the local requirements. DTDs have this capability, as they
are created at a point where more detailed information about
the input operands is available.

6. REFERENCES

[1] M. Gotschlich and B. Wess. Automatic generation of
constrained expression trees for global optimized DSP
assembly code. In Proc. 7th Int. Conf. on Signal Proces-
sing Applications & Technology, volume 1, pages 732–
736, Boston, October 1996.

[2] B. Wess and W. Kreuzer. Optimized DSP assembly co-
de generation starting from homogeneous atomic data
flow graphs. In Proc. 38th Midwest Symp. on Circuits
and Systems, volume 2, pages 1268–1271, Rio de Ja-
neiro, August 1995.

[3] M. R. Garey and D. S. Johnson. Computers and Intrac-
tability. W. H. Freeman and Company, 1979.

[4] B. Wess. Automatic instruction code generation based
on trellis diagrams. In Proc. IEEE Int. Symp. on Cir-
cuits and Systems, volume 2, pages 645–648, San Die-
go, May 1992.

[5] B. Wess. Code generation based on trellis diagrams. In
P. Marwedel and G. Goossens, editors, Code Genera-
tion for Embedded Processors, chapter 11, pages 188–
202. Kluwer Academic Publishers, 1995.

[6] U. Krebelder, C. Brem, S. Fröhlich, and M. Gotschlich.
Target description language TDL - Ein Dateiformat zur
Beschreibung von Signalprozessoren. Technical Re-
port VCGRG-97-1, Institut für Nachrichtentechnik und
Hochfrequenztechnik, University of Technology, Vien-
na, 1997.

[7] M. Gotschlich. Automatischer Codegenerator für die
Signalprozessorfamilie ADSP-2100. Diplomarbeit, Oc-
tober 1995.

